AR, VR – Real-time communication in 5G

GSMA Intelligence forecasts that the number of 5G connections globally will reach 1.3 billion by 2025, covering 40 percent of the world’s population or approximately 2.7 billion people. At that time, the Americas region is expected to account for over 260 million 5G connections or 20 percent of the global market.

The question everyone is asking in telco last couple of years is – do we really need 5G? Do we really need that throughput for our voice, video and messaging services? Can we significantly improve real-time communication services so that customers would be willing to pay for it? RCS aka Advanced Messaging is a great example of how difficult it can be to find the right business model for new technologies. EVS supported in 4G is more than what we need for voice calling. Although video calling is possible in 4G, not that many customers are using this option on their mobile devices. More popular than video is desktop-sharing, collaboration and communication in context. Well, lower latency and better throughput can be useful – but is it a reason strong enough to invest into the new 5G infrastructure, when collaboration applies mainly to fixed networks?

5G Drivers. Source GSMA

Still there are real-time communication applications which require low latency and huge amount of data so that 4G is not enough. Virtual Reality (VR) applications like 360-degree video will necessitate higher resolutions of 8K and above, and stereoscopic video (which separates left and right eye views in VR) also requires additional bandwidth. When most people hear about 3D video, holograms, Augmented Reality (AR) and Virtual Reality (VR), they mostly think about gaming. And yes, gaming can be a good example and people like to spend money for entertainment. But there are other examples, where AR and VR can make a difference.

Read More

News: Bitcoin and Mobile Networks?

Our current economy is digitized and generates an exponential growth of person-to-person (P2P) transactions. On the other hand we often face challenges around flexibility, trust, identity and authorization that existing financial instruments are sometimes struggling to address.

And that’s where blockchain comes into play. Blockchain is designed as a secure distributed system with high Byzantine fault tolerance. The most successful use cases for blockchain today are related to financial transactions and the management of financial assets. The most famous examples include Bitcoin, Ethereum, Ripple or Hyperledger.

Growth of Cryptocurrencies, © GSMA Intelligence 2018

GSMA Intelligence recently published a new issue of Global Mobile Radar, which analyzes the relationship of blockchain and mobile communications.

Read More

News: RTC in 2017

GSMA has just recently published the final numbers for 2017. As expected the last year we’ve seen less 4G deployments than in 2016.

4G Deployments in 2017

The only exception was the RCS. (Btw. GSMA released its Universal Profile Version 2.0 for Advanced RCS Messaging.)

From the population coverage point of view the last year meant a great step forward. Although many developing countries have been still more focused on 3G (4G coverage is on average 35% there), the overall number of 4G coverage increased significantly.

Population Coverage, © GSMA Intelligence 2017

The main reasons for that are:

  • China has achieved 99% coverage in less than three years and it is now 4G-first
  • In India Reliance Jio has beem driving the technological move towards 4G and other operators are following
Technology Migration© GSMA Intelligence 2017

Read More

News: Mobile IoT Deployments

The last time we discussed 5G and IMS. One of the main drivers for 5G is Machine-2-Machine (M2M) communication. But surely 5G is not the only technology which enables Internet of Things (IoT). Many operators already do support proprietary technologies such as SigFox or LoRaWAN. But there are also 3GPP standardized (Release 13) networks for IoT other than 5G. They are LTE-M and NB-IoT, and they both operate on licensed spectrum. These technologies came a bit later, however now it seems they are gaining momentum.

On GSMA pages you can now find an interactive map with the existing IoT deployments.

GSMA IoT Map, © GSMA 2017

Let’s compare LTE-M and NB-IoT and take a look how they can benefit us.

Read More

IMS and 5G

Maybe you have already heard about some features as Dynamical Network Slicing, CloudRAN, Network-as-a-Services, …  Some basic 5G principals we’ll briefly discussed also in this post. However my question is: What will be the change from the real-time communication point of view? What will be the 5G calling (VoNR) look like? Is the IMS (IP Multimedia Services, don’t confuse with International Microwave Symposium) to stay in the operators’ networks?

5G trial deployments – map, © GSMA Intelligence 2017

Seems that at the first stage the change will be less dramatic than when we introduced 4G. 4G was in many ways a revolution, whereas 5G is “only” an evolution. In fact 4G and 5G, at least in the beginning, will coexist and complement one each other. Still 5G will have a big impact on our existing technologies and the way we work with telecommunication networks.

5GS + EPC + IMS

Read More